Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0389520090160010005
Sleep Medicine.Psychophysiology
2009 Volume.16 No. 1 p.5 ~ p.9
Human Physiological Models of Insomnia
Sim Hyun-Bo

Yu Bum-Hee
Abstract
Relatively little is known about the neurobiology of insomnia, despite its wide prevalence and broad medical impact. Although much is still to be learned about the pathophysiology of the disorder, identification, systematic assessment, and appropriate treatment are clearly beneficial to patients. Recent research, using quantitative EEG, polysomnography (PSG), multiple sleep latency test (MSLT) and neuroimaging techniques, suggests that some broad areas can be identified as possible pathophysiological models. Sleep-wake homeostat model hypothesizes a failure in homeostatic regulation of sleep, an attenuated increase in sleep drive with time awake, and/or defective sensing of sleep need. Circadian clock model hypothesizes a dysfunctional circadian clock, resulting in changes in the timing of sleep-wake propensity that are incompatible with normal sleep. Intrinsic sleep-wake state mechanism model suggests that abnormal function of insomnia comprises the systems responsible for expression of the sleep states themselves. Extrinsic over-ride mechanism (stress-response) model suggests that insomnia reflects the consequences of overactivity of one of the systems considered "extrinsic" to normal sleep-wake control. Many current therapies for insomnia are based on these physiological models. Several attempts have been made to create a physiological model that would explain this disorder and could be used as a foundation for treatment. However, it appeared that no model can fully explain and clarify all aspects of insomnia. Future research should be necessary to expand our knowledge on the biological dimensions of insomnia.
KEYWORD
Insomnia, Pathophysiology, Physiological Model
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø